Nadaraya-Watson estimator for stochastic processes driven by stable Lévy motions
نویسندگان
چکیده
We discuss the nonparametric Nadaraya-Watson (N-W) estimator of the drift function for ergodic stochastic processes driven by α-stable noises and observed at discrete instants. Under geometrical mixing condition, we derive consistency and rate of convergence of the N-W estimator of the drift function. Furthermore, we obtain a central limit theorem for stable stochastic integrals. The central limit theorem has its own interest and is the crucial tool for the proofs. A simulation study illustrates the finite sample properties of the N-W estimator. AMS 2000 subject classification. 60G52, 62G20, 62M05, 65C30
منابع مشابه
Parameter Estimation for Ornstein-uhlenbeck Processes Driven by Α-stable Lévy Motions
The parameter estimation theory for stochastic differential equations driven by Brownian motions or general Lévy processes with finite second moments has been well developed. In this paper, we consider the parameter estimation problem for Ornstein-Uhlenbeck processes driven by α-stable Lévy motions. The classical maximum likelihood method does not apply in this context because the likelihood ra...
متن کاملNonparametric inference of discretely sampled stable Lévy processes
We study nonparametric inference of stochastic models driven by stable Lévy processes. We introduce a nonparametric estimator of the stable index that achieves the parametric √ n rate of convergence. For the volatility function, due to the heavy-tailedness, the classical least-squares method is not applicable. We then propose a nonparametric least-absolute-deviation or median-quantile estimator...
متن کاملWeighted Nadaraya-Watson Regression Estimation
In this article we study nonparametric estimation of regression function by using the weighted Nadaraya-Watson approach. We establish the asymptotic normality and weak consistency of the resulting estimator for-mixing time series at both boundary and interior points, and we show that the estimator preserves the bias, variance, and more importantly, automatic good boundary behavior properties of...
متن کاملNadaraya-Watson estimator for sensor fusion problems
The classical Nadaraya-Watson estimator is shown to solve a generic sensor fusion problem where the underlying sensor error densities are not known but a sample is available. By employing Haar kernels this estimator is shown to yield finite sample guarantees and also to be efficiently computable. TWO simulation examples, and a robotics example involving the detection of a door using arrays of u...
متن کاملOn the Adaptive Nadaraya-watson Kernel Regression Estimators
Nonparametric kernel estimators are widely used in many research areas of statistics. An important nonparametric kernel estimator of a regression function is the Nadaraya-Watson kernel regression estimator which is often obtained by using a fixed bandwidth. However, the adaptive kernel estimators with varying bandwidths are specially used to estimate density of the long-tailed and multi-mod dis...
متن کامل